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“Complex systems consist of a large number of 
interacting components. The interactions give rise 

to emergent hierarchical structures. The 
components of the system and properties at 

systems level typically change with time.” 

H.J. Jensen, in Encyclopedia of Complexity and Systems Science



Importance of metaphors, analogies and common languages



Tool box
Agent-based and numerical simulations 

(Non-linear) Dynamical systems 
Stochastic processes 

Data mining and optimisation 
Networks 



Tool box

Biological networks 
- Protein-protein interaction networks 

- Neural networks 
- Food webs

Social networks 
- Collaboration networks 

- Communication networks 
- Online social networks

Agent-based and numerical simulations 
(Non-linear) Dynamical systems 

Stochastic processes 
Data mining and optimisation 

Networks 







Consensus



Random walk



Time scale separation



Di↵usion on a network

We can model this process as di↵usion on
a network where:

A =


0 1
1 0

�
.

In general, the dynamics of node i is
given by

dCi

dt
=

nX

j=1

pAij(Cj � Ci).

Note that the network may be directed

too (e.g., a one-way membrane).



Di↵usion on a network

Examining the system of equations we find that:

dCi

dt
=

nX

j=1

pAij(Cj � Ci) =
nX

j=1

pAijCj �
nX

j=1

pAijCi,

=
nX

j=1

pAijCj � pkiCi =
nX

j=1

p(Aij � �ijki)Cj ,

where �ij is the Kronecker delta: �ij = 1 if i = j, and 0 otherwise.

In matrix form these ODEs are given by:

Ċ = p(A�D)C.

Here D = diag(k), where k is the vector of node degrees.



The graph Laplacian

The matrix L = D �A is the Laplacian of the network.

Rearranging Ċ = p(A�D)C we can see why:

Ċ + pLC = 0

In a simple network (no self-loops) the entry-wise definition of the
Laplacian is

Lij =

8
<

:

�1, i 6= j&(i, j) 2 E ,
ki, i = j,
0, otherwise.

= �ijki �Aij .



The graph Laplacian

We know the solution to the linear system of equations Ċ = �pLC is

C(t) = e�ptLC0.

Let v1, . . . , vn be the eigenvectors of L with corresponding eigenvalues
�1, . . . ,�n such that

Lvi = �ivi.

We can write the solution C(t) as linear combinations of vi with
time-dependent coe�cients:

C(t) =
X

i

ai(t)vi.



The graph Laplacian

If C(t) =
P

i ai(t)vi, the equation Ċ + pLC = 0 now becomes

X

i

✓
dai
dt

+ p�iai

◆
vi = 0.

Given that the eigenvectors are orthogonal, we can dot-multiply the
equation with any other eigenvector to get:

dai
dt

+ p�iai = 0,

with solution
ai(t) = ai(0)e

�p�it.



Properties of the Laplacian

The Laplacian has many interesting and useful properties.

For instance, let be the n⇥ 1 vector of ones, then:

L = (D �A) ,

= D �A ,

= k �A ,

where k the vector of degrees, and the i-th component of the vector
A is

P
j Aij = ki, so

L = 0.

The vector is an eigenvector associated with the eigenvalue � = 0.

In fact, all eigenvalues of the Laplacian are real and non-negative.



Properties of the Laplacian

If the network has di↵erent connected components we can arrange the
rows and columns of L so that

L =

2

666664

0 . . .

0
. . .

...

3

777775
,

then vectors with the following structure

vT = [ 1, 1, . . . , 1, 1| {z }
nodes in component

, 0, 0, . . . ],

are also eigenvectors of L with eigenvalue 0.



Properties of the Laplacian

Then the total number of zero eigenvalues of L is equal to the number
of components.

When �2 > 0 then there is only one component, this eigenvalue is
know as the algebraic connectivity of the network.

Remember that ai(t) = ai(0)e�p�it; given that �i � 0, what happens

to a(t) as t ! 1?



Consensus dynamics on a network

Now we turn our attention to the problem of consensus.

Consensus is to reach an agreement regarding a certain quantity of

interest in a system that depends on the state of all agents.



Consensus dynamics on a network

Consensus dynamics are an important part of understanding how
flocks work.



Consensus dynamics on a network

Consensus dynamics are an important part of the design of ensembles
of autonomous agents.



Consensus dynamics on a network

Consensus dynamics are an important to understand the evolution of
political opinion.



Applicability

Other applications include:

Synchronisation of oscillators.

Fast consensus in Small Worlds.

Rendezvous in space.

Distributed Sensor Fusion in Sensor Networks.

Distributed formation control.

etc.



Mathematical formulation

Suppose we have a system with N interacting agents, each of which
has an opinion xi(t) that evolves in time. For example, we can have
xi 2 [0, 1].

If agents can share information then their opinion is governed by:

ẋi =
X

j

Aij (xj � xi) + bi(t),

where bi(t) can be any forcing function.



Mathematical formulation

When bi(t) = 0 the system becomes:

ẋi =
X

j

Aij (xj � xi) ,

=
X

j

Aijxj � kixi,

=
X

j

Aij (xj � �ijkixi) .

In other words, the collective dynamics of the system are Laplacian:

ẋ = �Lx.



Mathematical formulation

We say that consensus is reached whenever

xi(t) = ↵ 8 i.

However, in many networks, this is not always achieved.



Undirected consensus

A consensus is reached when ẋi = 0 for all i, which means that

0 = �Lx.

Remember that the vector is an eigenvector of L and L = 0.

In an undirected network this means that

lim
t!1

x(t) = lim
t!1

e�tLx(0) = ↵ ,

where

↵ =
1

N

X

i

xi(0).



Examples

Consider a ring lattice with 50 nodes:

All nodes have degree 4.

�2 = 0.0786.



Examples

Consider a ring lattice with 50 nodes:

All nodes have degree 4.

�2 = 0.0786.
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Consensus in a ring lattice network with 50 nodes and k=4



Examples

An ER graph with 50 nodes :

All nodes have degree on
average 4.

�2 = 1.3.



Examples

An ER graph with 50 nodes :

All nodes have degree on
average 4.

�2 = 1.3.
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Consensus in an ER G(50, 150) network



Examples

A SW graph with 50 nodes :

All nodes have degree 4.

�2 = 0.14.



Examples

A SW graph with 50 nodes :

All nodes have degree 4.

�2 = 0.14.
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Consensus in a SW network



Examples

A full graph with 50 nodes :

All nodes have degree 49.

�2 = 50.
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Consensus in the full graph



Random walks

A random walker navigates the network,
jumping from node to node.

At each node, it chooses its next
destination by choosing one neighbour at
random.

The way in which the walker chooses
where to go next determines the type of
random walk.

The simplest way is to choose uniformly
at random.



Random walks

Let pi(t) be the probability that the walker is at node i at time t.

The probability that a node is visited at time t+ 1 is

pi(t+ 1) =
X

j

Aji

kj
pj(t).

In matrix form this can be written as:

p(t+ 1) = AD�1p(t).

If the network is directed then

p(t+ 1) = ATD�1
outp(t).



Normalised Laplacian

If the network is strongly connected and acyclic then the probability
converges to a steady state p ! ⇡ as t ! 1:

⇡ = AD�1⇡,

which means

0 = ⇡ �AD�1⇡,

0 = (I �AD�1)⇡,

0 = (D �A)D�1⇡,

0 = LD�1⇡.

The steady state ⇡ is an eigenvector of LD�1 with eigenvalue 0.



Normalised Laplacian

The matrix LD�1 is called the normalised Laplacian of the network.

The vector of ones = [1, 1, . . . , 1]T is clearly an eigenvector of LD�1.

In general, if v is an eigenvector of L, then Dv is an eigenvector of

LD�1.



Steady state

Suppose the network is undirected and connected and ⇡ = AD�1⇡.

Given that
L = 0,

we have that ⇡ = aD , where a 2 R because

LD�1⇡ = aLD�1D = aL = 0.

This means that ⇡i ⇠ ki, the steady state probability (occupation) of
a node is proportional to its degree.

Choosing a appropriately ⇡i =
ki
2m , and

P
⇡i = 1.



Random walks on directed networks

On directed networks, there are other
factors to consider.

A random walker can get stuck in a sink.

Source nodes may never be visited.

Strong connectivity is necessary for a
unique stationary state.



Teleporting random walk

A walker in a node chooses to follow an
edge with probability ↵ 2 [0, 1] or teleport
to any other node with probability 1� ↵.

How the teleporting node is chosen can
vary; uniformly at random is a common
choice.



Teleporting random walk

A walker in a node chooses to follow an
edge with probability ↵ 2 [0, 1] or teleport
to any other node with probability 1� ↵.

How the teleporting node is chosen can
vary; uniformly at random is a common
choice.



Teleporting random walk

A walker in a node chooses to follow an
edge with probability ↵ 2 [0, 1] or teleport
to any other node with probability 1� ↵.

How the teleporting node is chosen can
vary; uniformly at random is a common
choice.



Teleporting random walk

If A is the adj. matrix, and kout = A the vector of out-degrees let

B =

Random walkz }| {
↵D�1A

1

N

+

"Uniform teleportationz }| {
(1� ↵)

1

N
I +

Dangling nodesz }| {

1

N

↵
1

N
diag(a)

#
T .

D = diag(kout), if kout(i) = 0 for any node we set it to 1.

a is a N ⇥N rank-1 matrix aij = 1 8 j if kout(i) = 0.

BT is a stochastic matrix that defines a random walk with

teleportation on the network.



Page Rank

Page Rank a popular centrality metric
based on teleporting random walks.

Page Rank’s premise is that a hyperlink
from one page to another is a vote for the
target page.

It is akin to a democracy where your

vote’s worth depends on the worth of the

votes you receive.



Page Rank

For initial condition x(0) the vector of probabilities at the next step is

x(1) = BTx(0).

The steady-state of the Markov chain is given by the leading
left-eigenvector of B:

⇡ = BT⇡,

The leading eigenvalue �1 = 1 (guaranteed by Perron-Frobenius).



Page Rank

Each entry xi is the percentage of time that a random walker would
spend on node i in the long-time limit.

If the network is weighted the same procedure still works using the

out-strength instead of the out-degree.



Page Rank

Consider the following example:

A =

2

6666664

0 0 0 1 0 0
1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 1 1 0

3

7777775



Page Rank

Normalise the adjacency matrix :

D�1A =

2

6666664

0 0 0 1 0 0
0.5 0 0 0.5 0 0
0 1 0 0 0 0
0 0 0.5 0 0 0.5
0 0 0 0.5 0 0.5
0 0 0 0.5 0.5 0

3

7777775



Page Rank

Add teleportation with ↵ = 0.85:

B =

2

666664

0.025 0.025 0.025 0.875 0.025 0.025
0.450 0.025 0.025 0.450 0.025 0.025
0.025 0.875 0.025 0.025 0.025 0.025
0.025 0.025 0.450 0.025 0.025 0.450
0.025 0.025 0.025 0.450 0.025 0.450
0.025 0.025 0.025 0.450 0.450 0.025

3

777775



Page Rank

The lead eigenvector of BT is then:

x =

A
B
C
D
E
F

2

6666664

0.2049
0.3488
0.3436
0.6750
0.2474
0.4488

3

7777775

6
4
3
1
5
2



Page Rank

The lead eigenvector of D1A (i.e., when ↵ = 1) is:

x =

A
B
C
D
E
F

2

6666664

0.1718
0.3436
0.3436
0.6871
0.2290
0.4581

3

7777775

6
3
3
1
5
2

Why is it di↵erent to when ↵ = 0.85?



Graph partition and community detection

Graph partition and community detection are two di↵erent but
related problems in network science.

Generally, both deal with the problem of finding groups (or clusters)
of nodes such that the number of edges among the groups is minimal.



Graph partition and community detection

The di↵erence resides in what they are used for:

Graph partition is usually needed when one needs to do
something on the network.

Community detection is used when one wants to analyse and
understand the properties of the network.



Graph partition and community detection

For example, graph partitioning can help in the numerical solution of
PDEs on a multicore architecture:

N Gourdain et al 2009 Comput. Sci. Disc. 2 015003.

Usually the number of groups will be external rather than intrinsic
constraint, e.g., the number of cores in a computer.



Graph partition and community detection

With community detection we can understand how students form
tightly-knit groups in online networks:

A L Traud et al 2009 Chaos 19, 041104.

The number of communities in determined by the structure of the

network (if there are communities, that is).


